login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105414
Primes p = prime(k) such that p+2 and prime(k+7)-2 are both prime numbers.
6
17, 71, 149, 191, 431, 521, 821, 1049, 1277, 1289, 1451, 1619, 1667, 1877, 1949, 2027, 2657, 3299, 3329, 3467, 3527, 3539, 3767, 3929, 4271, 4931, 5477, 5849, 6131, 6659, 6701, 6779, 6827, 8537, 8819, 8999, 9419, 9719, 9929, 10037, 10091, 11069, 11117
OFFSET
1,1
COMMENTS
Conjecture: There are infinitely many primes p(k) such that p(k)-2 and p(k+m)-2 are both primes for all m > 1.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
EXAMPLE
p(8)-2 = 17, p(8+6)-2 = 41, both prime, 17 is in the sequence.
MATHEMATICA
For[n = 1, n < 500, n++, If[PrimeQ[Prime[n] + 2], If[PrimeQ[Prime[n + 7] - 2], Print[Prime[n]]]]] (* Stefan Steinerberger, Feb 07 2006 *)
Select[Prime[Range[1500]], AllTrue[{#+2, Prime[PrimePi[#]+7]-2}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 05 2019 *)
PROG
(PARI) pnpk(n, m=7, k=2) = { local(x, v1, v2); for(x=1, n, v1 = prime(x)+k; v2 = prime(x+m)-k; if(isprime(v1)&isprime(v2), print1(v1-k, ", ") ) ) ; } \\ corrected by Amiram Eldar, Oct 04 2024
(PARI) lista(pmax) = {my(k = 1, p = primes(8)); forprime(p1 = p[#p], pmax, k++; p[#p] = p1; if(p[2]- p[1] == 2 && p[8] - p[7] == 2, print1(p[1], ", ")); for(i = 1, #p-1, p[i] = p[i+1])); } \\ Amiram Eldar, Oct 04 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, May 02 2005
STATUS
approved