OFFSET
1,3
LINKS
M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math/0503436 [math.CO], 2005.
FORMULA
T(r, n) = Sum{l>=r, Sum{d|l, (-1)^(2n-d-l/d)*C(n, d)*C(n, l/d)*C(l, r) }}.
E.g.f.: Sum(((1+x)^n-1)^n*exp((1-(1+x)^n)*y)*y^n/n!,n=0..infinity). - Vladeta Jovovic, Feb 24 2008
EXAMPLE
1
0,2
0,4,6
0,1,45,24
0,0,90,432,120
0,0,78,2248,4200,720
0,0,36,5776,43000,43200,5040
0,0,9,9066,222925,755100,476280,40320
0,0,1,9696,727375,6700500,13003620,5644800,362880
0,0,0,7480,1674840,37638036,179494350,226262400,71850240,3628800
MATHEMATICA
t[r_, n_] := Sum[ Sum[ (-1)^(2n - d - k/d)*Binomial[n, d]*Binomial[n, k/d]*Binomial[k, r], {d, Divisors[k]}], {k, r, n^2}]; Flatten[ Table[t[r, n], {r, 1, 10}, {n, 1, r}]] (* Jean-François Alcover, Jun 27 2012, from formula *)
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], Union[First/@#]==Union[Last/@#]==Range[k]&]], {n, 6}, {k, n}] (* Gus Wiseman, Nov 14 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Mar 27 2005
STATUS
approved