login
A104601
Triangle T(r,n) read by rows: number of n X n (0,1)-matrices with exactly r entries equal to 1 and no zero row or columns.
11
1, 0, 2, 0, 4, 6, 0, 1, 45, 24, 0, 0, 90, 432, 120, 0, 0, 78, 2248, 4200, 720, 0, 0, 36, 5776, 43000, 43200, 5040, 0, 0, 9, 9066, 222925, 755100, 476280, 40320, 0, 0, 1, 9696, 727375, 6700500, 13003620, 5644800, 362880, 0, 0, 0, 7480, 1674840
OFFSET
1,3
LINKS
M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math/0503436 [math.CO], 2005.
FORMULA
T(r, n) = Sum{l>=r, Sum{d|l, (-1)^(2n-d-l/d)*C(n, d)*C(n, l/d)*C(l, r) }}.
E.g.f.: Sum(((1+x)^n-1)^n*exp((1-(1+x)^n)*y)*y^n/n!,n=0..infinity). - Vladeta Jovovic, Feb 24 2008
EXAMPLE
1
0,2
0,4,6
0,1,45,24
0,0,90,432,120
0,0,78,2248,4200,720
0,0,36,5776,43000,43200,5040
0,0,9,9066,222925,755100,476280,40320
0,0,1,9696,727375,6700500,13003620,5644800,362880
0,0,0,7480,1674840,37638036,179494350,226262400,71850240,3628800
MATHEMATICA
t[r_, n_] := Sum[ Sum[ (-1)^(2n - d - k/d)*Binomial[n, d]*Binomial[n, k/d]*Binomial[k, r], {d, Divisors[k]}], {k, r, n^2}]; Flatten[ Table[t[r, n], {r, 1, 10}, {n, 1, r}]] (* Jean-François Alcover, Jun 27 2012, from formula *)
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], Union[First/@#]==Union[Last/@#]==Range[k]&]], {n, 6}, {k, n}] (* Gus Wiseman, Nov 14 2018 *)
CROSSREFS
Right-edge diagonals include A000142, A055602, A055603. Row sums are in A104602.
Column sums are in A048291. The triangle read by columns = A055599.
Sequence in context: A265820 A096984 A213723 * A233673 A319931 A192133
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Mar 27 2005
STATUS
approved