login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104362
Sum of divisors of A104357(n) = A104350(n) - 1.
8
1, 6, 12, 60, 180, 1260, 2760, 7560, 37800, 415800, 1265040, 16287864, 113538360, 567638664, 1135134000, 19298936664, 58868650320, 1113894381120, 5499724230000, 39112247205360, 423754918508832, 10054207233388032, 29220034833990000, 146100190526456640, 1915895635570469280, 5712343370808883200, 39885667247556843120
OFFSET
2,2
LINKS
Max Alekseyev, Table of n, a(n) for n = 2..145 (terms for n = 2..74 from Amiram Eldar)
FORMULA
a(n) = A000203(A104357(n));
a(p) = A104350(p) for primes p.
MAPLE
A000142 := proc(n) RETURN(n!) ; end: A006530 := proc(n) local i, t1, t2, t3, t4; if n = 1 then RETURN(1) ; else t1 := numtheory[divisors](n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; RETURN(1); fi ; end: A104350 := proc(n) local k, resul ; resul := 1 ; for k from 1 to n do resul := resul*A006530(k) ; od ; RETURN(resul) ; end: A104357 := proc(n) A104350(n)-1 ; end: A104362 := proc(n) numtheory[sigma](A104357(n)) ; end: for n from 2 to 30 do printf("%d, ", A104362(n)) ; od ; # R. J. Mathar, Oct 30 2006
MATHEMATICA
a[n_] := DivisorSigma[1, Product[FactorInteger[k][[-1, 1]], {k, 1, n}]-1]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 10 2018 *)
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 06 2005
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 30 2006
STATUS
approved