OFFSET
1,2
COMMENTS
REFERENCES
Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..641
Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint, arXiv:1202.3670 [math.HO], 2012-2018.
Eric Weisstein's World of Mathematics, Greatest Prime Factor.
Reinhard Zumkeller, Products of largest prime factors of numbers <= n.
FORMULA
log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021
MATHEMATICA
A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
FoldList[Times, Table[FactorInteger[n][[-1, 1]], {n, 30}]] (* Harvey P. Dale, May 25 2023 *)
PROG
(Haskell)
a104350 n = a104350_list !! (n-1)
a104350_list = scanl1 (*) a006530_list
-- Reinhard Zumkeller, Apr 10 2014
(PARI) gpf(n)=my(f=factor(n)[, 1]); f[#f]
a(n)=prod(i=2, n, gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
(PARI) first(n)=my(v=vector(n, i, 1)); forfactored(k=2, n, v[k[1]]=v[k[1]-1]*vecmax(k[2][, 1])); v \\ Charles R Greathouse IV, May 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 06 2005
EXTENSIONS
More terms from David Wasserman, Apr 24 2008
STATUS
approved