login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104350
Partial products of largest prime factors of numbers <= n.
28
1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
OFFSET
1,2
COMMENTS
Partial Products of A006530: a(n) = Product_{k=1..n} A006530(k).
a(n) = a(n-1)*A006530(n) for n>1, a(1) = 1;
A020639(a(n)) = A040000(n-1), A006530(a(n)) = A007917(n) for n>1.
A001221(a(n)) = A000720(n), A001222(a(n)) = A001477(n-1).
A007947(a(n)) = A034386(n).
a(n) = A000142(n) / A076928(n). [Corrected by Franklin T. Adams-Watters, Oct 30 2006]
In decimal representation: A104351(n) = number of digits of a(n), A104355(n) = number of trailing zeros of a(n).
A104357(n) = a(n) - 1, A104365(n) = a(n) + 1.
REFERENCES
Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..641
Eric Weisstein's World of Mathematics, Greatest Prime Factor.
FORMULA
log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021
MATHEMATICA
A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
FoldList[Times, Table[FactorInteger[n][[-1, 1]], {n, 30}]] (* Harvey P. Dale, May 25 2023 *)
PROG
(Haskell)
a104350 n = a104350_list !! (n-1)
a104350_list = scanl1 (*) a006530_list
-- Reinhard Zumkeller, Apr 10 2014
(PARI) gpf(n)=my(f=factor(n)[, 1]); f[#f]
a(n)=prod(i=2, n, gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
(PARI) first(n)=my(v=vector(n, i, 1)); forfactored(k=2, n, v[k[1]]=v[k[1]-1]*vecmax(k[2][, 1])); v \\ Charles R Greathouse IV, May 10 2017
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 06 2005
EXTENSIONS
More terms from David Wasserman, Apr 24 2008
STATUS
approved