login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104076
If k(m) is the m-th divisor (when the divisors are ordered by size) of n, then a(n) = gcd(k(1)+k(2), k(2)+k(3), k(3)+k(4), ..., k(j-1)+k(j)), where j is the number of divisors of n.
1
3, 4, 3, 6, 1, 8, 3, 4, 1, 12, 1, 14, 3, 4, 3, 18, 1, 20, 3, 2, 1, 24, 1, 6, 3, 4, 1, 30, 1, 32, 3, 2, 1, 6, 1, 38, 3, 4, 1, 42, 1, 44, 3, 2, 1, 48, 1, 8, 1, 4, 1, 54, 1, 2, 1, 2, 1, 60, 1, 62, 3, 2, 3, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 2, 1, 80, 1, 4, 1, 84, 1, 2, 3, 4, 1, 90, 1, 4, 3, 2, 1, 6, 1, 98
OFFSET
2,1
LINKS
EXAMPLE
The divisors of 14 are 1,2,7,14. So a(14) = gcd(1+2, 2+7, 7+14) = 3.
MAPLE
A104076 := proc(n) local dvs ; dvs := sort(convert(numtheory[divisors](n), list)) ; igcd(seq( op(i, dvs)+op(i+1, dvs), i=1..nops(dvs)-1)) ; end: for n from 2 to 140 do printf("%d, ", A104076(n)) ; od: # R. J. Mathar, Sep 05 2008
MATHEMATICA
Table[GCD@@(Total/@Partition[Divisors[n], 2, 1]), {n, 2, 100}] (* Harvey P. Dale, Dec 18 2018 *)
CROSSREFS
Cf. A143771.
Sequence in context: A360059 A262150 A325594 * A238161 A332880 A281626
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 31 2008
EXTENSIONS
Extended by R. J. Mathar, Sep 05 2008
Definition corrected by Leroy Quet, Sep 21 2008
STATUS
approved