login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.
8

%I #27 Mar 12 2024 08:47:53

%S 1,10,1023,29524,349525,2441406,12093235,47079208,153391689,435848050,

%T 1111111111,2593742460,5628851293,11488207654,22250358075,41189313616,

%U 73300775185,125999618778,210027483919,340614792100,538947368421,833994048910,1264758228163

%N a(n) = n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

%F G.f.: (341*x^8 +11352*x^7 +77440*x^6 +153824*x^5 +99330*x^4 +19624*x^3 +968*x^2 +1)/(x -1)^10. - _Colin Barker_, Oct 29 2012

%F a(n) = (n^10-1)/(n-1) with a(1) = 10. - _Arkadiusz Wesolowski_, Mar 30 2013

%t With[{eq=Total[n^Range[0,9]]},Table[eq,{n,0,20}]] (* _Harvey P. Dale_, Dec 16 2011 *)

%o (PARI) a(n)=n^9+n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A001017.

%K nonn,easy

%O 0,2

%A Douglas Winston (douglas.winston(AT)srupc.com), Mar 25 2005