login
A103311
A transform of the Fibonacci numbers.
6
0, 1, 1, 0, -2, -5, -8, -8, 0, 21, 55, 89, 89, 0, -233, -610, -987, -987, 0, 2584, 6765, 10946, 10946, 0, -28657, -75025, -121393, -121393, 0, 317811, 832040, 1346269, 1346269, 0, -3524578, -9227465, -14930352, -14930352, 0, 39088169, 102334155, 165580141, 165580141, 0, -433494437, -1134903170
OFFSET
0,5
COMMENTS
Apply the Chebyshev transform (1/(1+x^2), x/(1+x^2)) followed by the binomial involution (1/(1-x), -x/(1-x)) (expressed as Riordan arrays) to -Fibonacci(n). Conjecture: all elements in absolute value are Fibonacci numbers.
FORMULA
G.f.: x*(1-x)^2/(1 - 3*x + 4*x^2 - 2*x^3 + x^4);
a(n) = 3*a(n-1) - 4*a(n-2) + 2*a(n-3) - a(n-4);
a(n) = (sqrt(5)/2 - 1/2)^n*(sqrt(2*sqrt(5)/25 + 1/5)*sin(2*Pi*n/5) - sqrt(5)*cos(2*Pi*n/5)/5) + (sqrt(5)/2 + 1/2)^n*(sqrt(5)*cos(Pi*n/5)/5 + sqrt(1/5 - 2*sqrt(5)/25)*sin(Pi*n/5));
a(n) = -Sum_{j=0..n} (-1)^j*binomial(n, j)*Sum_{k=0..floor(j/2)} (-1)^k*binomial(n-k, k)*Fibonacci(j-2*k).
MATHEMATICA
LinearRecurrence[{3, -4, 2, -1}, {0, 1, 1, 0}, 50] (* Harvey P. Dale, May 03 2020 *)
CROSSREFS
Cf. A000045.
Sequence in context: A140053 A346180 A377995 * A019824 A284868 A019772
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jan 30 2005
STATUS
approved