login
A102811
Least k such that, for j from 1 to n, 2*P(k+n-j) + 3 are consecutive primes with P(i)= i-th prime.
1
1, 3, 44, 62178, 643266
OFFSET
1,2
EXAMPLE
For n = 1, 2*P(1) + 3 = 2*2 + 3 = 7 is prime, so a(1)=1 as P(1)=2.
For n = 2, 2*P(3) + 3 = 2*5 + 3 = 13 is prime, 2*P(4) + 3 = 2*7 + 3 = 17 is a prime consecutive to 13, so a(2)=3 as P(3)=5.
PROG
(PARI) a(n) = {my(m=1, p=vector(n, i, prime(i)), q); while(ispseudoprime(q=(2*p[1]+3)) + sum(k=2, n, (q=nextprime(q+1))==2*p[k]+3) < n, m++; p=concat(p[2..n], nextprime(p[n]+1))); m; } \\ Jinyuan Wang, Mar 20 2020
CROSSREFS
Cf. A089009.
Sequence in context: A259785 A369944 A193623 * A307007 A142600 A212999
KEYWORD
nonn,hard,more
AUTHOR
Pierre CAMI, Feb 26 2005
STATUS
approved