login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102560
Expansion of (1-x^3)/(1-x^4).
2
1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1
OFFSET
0,1
COMMENTS
Period 4: repeat [1, 0, 0, -1].
FORMULA
G.f.: (1+x+x^2)/(1+x+x^2+x^3).
a(n) = (-1)^floor(n/2)/2+(-1)^n/2.
a(n) = cos(Pi*n/2)/2 + sin(Pi*n/2)/2 + cos(Pi*n)/2.
a(n) = -a(n-1)-a(n-2)-a(n-3) for n>2 with a(0)=1, a(1)=a(2)=0. - Jaume Oliver Lafont, Dec 05 2008
MAPLE
seq(op([1, 0, 0, -1]), n=0..50); # Wesley Ivan Hurt, Jul 06 2016
MATHEMATICA
CoefficientList[ Series[(1 - x^3)/(1 - x^4), {x, 0, 105}], x] (* Robert G. Wilson v, Jan 15 2005 *)
PROG
(Magma) &cat [[1, 0, 0, -1]^^30]; // Wesley Ivan Hurt, Jul 06 2016
(PARI) x='x+O('x^50); Vec((1 - x^3)/(1 - x^4)) \\ G. C. Greubel, Jun 02 2017
CROSSREFS
Sequence in context: A190198 A071004 A188083 * A190669 A355328 A285258
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jan 14 2005
STATUS
approved