login
A102539
Square array T(n,k) read by antidiagonals: T(n,k) = Product_{1<=i<=j<=k} (n+i+j-1)/(i+j-1).
6
2, 3, 4, 4, 10, 8, 5, 20, 35, 16, 6, 35, 112, 126, 32, 7, 56, 294, 672, 462, 64, 8, 84, 672, 2772, 4224, 1716, 128, 9, 120, 1386, 9504, 28314, 27456, 6435, 256, 10, 165, 2640, 28314, 151008, 306735, 183040, 24310, 512, 11, 220, 4719, 75504, 674817
OFFSET
1,1
COMMENTS
Number of semistandard Young tableaux with at most n columns and with entries in [k].
T(n,k) is the number of k X k symmetric matrices with entries in 0..n with each row (and column) in nondecreasing order. - R. H. Hardin, Jul 08 2008
FORMULA
It appears that T is identical to the reflected triangle A073165, i.e. T(n, k) = Prod[i=1..floor((k+1)/2), C(n+k+2i-1-(k mod 2), 4i-1-2(k mod 2))] / Prod[i=0..floor((k-1)/2), C(2k-2i-1, 2i)].
EXAMPLE
Square array T(n,k) begins:
2, 4, 8, 16, 32, 64, ...
3, 10, 35, 126, 462, 1716, ...
4, 20, 112, 672, 4224, 27456, ...
5, 35, 294, 2772, 28314, 306735, ...
6, 56, 672, 9504, 151008, 2617472, ...
7, 84, 1386, 28314, 674817, 18076916, ...
...
MATHEMATICA
T[n_, k_] := Product[(n + i + j - 1)/(i + j - 1), {i, 1, k}, {j, i, k}];
Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 06 2018 *)
CROSSREFS
Rows include A000079, A001700, A003645, A000356.
Main diagonal is A049505.
Sequence in context: A217478 A279788 A207627 * A240220 A250229 A250277
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Jan 14 2005
STATUS
approved