login
A102403
Number of Dyck paths of semilength n having no ascents of length 2.
10
1, 1, 1, 2, 6, 17, 46, 128, 372, 1109, 3349, 10221, 31527, 98178, 308179, 973911, 3096044, 9894393, 31770247, 102444145, 331594081, 1077022622, 3509197080, 11466710630, 37567784437, 123380796192, 406120349756, 1339571374103
OFFSET
0,4
COMMENTS
Number of Łukasiewicz paths of length n having no (1,1) steps. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(4)=6 because we have HHHH, HU(2)DD, U(2)DDH, U(2)DHD, U(2)HDD and U(3)DDD where H=(1,0), U(2)=(1,2), U(3)=(1,3) and D=(1,-1).
Also the number of series-reduced Mathematica expressions with one atom and n + 1 positions. Also the number of rooted plane trees with n + 1 nodes in which there are no binary branchings (nodes of out-degree 2). - Gus Wiseman, Aug 14 2018
FORMULA
G.f.: G=G(z) satisfies z^3*G^3 + z(1-z)G^2 - G + 1 = 0.
a(n) = (1/n)*Sum_{j=ceiling((n+2)/3)..n} binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j), n > 0. - Vladimir Kruchinin, Mar 07 2011
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
(69*n^2+207*n+138)*a(n) + (97*n^2+609*n+830)*a(n+1) + (-38*n^2-342*n-694)*a(n+2) + (37*n^2+333*n+734)*a(n+3) + (2*n^2+18*n+34)*a(n+4) + (-7*n^2-87*n-266)*a(n+5) + (n^2+15*n+56)*a(n+6) = 0. - Robert Israel, Aug 24 2015
Recurrence (of order 4): (n+1)*(n+2)*(28*n^2 - 32*n - 39)*a(n) = 4*(n+1)*(14*n^3 - 9*n^2 - 62*n + 39)*a(n-1) + (140*n^4 - 160*n^3 - 401*n^2 + 469*n - 78)*a(n-2) - 12*(n-2)*(14*n^3 - 9*n^2 - 28*n - 8)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 24*n - 43)*a(n-4). - Vaclav Kotesovec, Mar 06 2016
a(n) ~ s * sqrt((1 - 2*r + 3*r^2*s)/(1 - r + 3*r^2*s)) /(2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.2869905464691794898... and s = 1.850270202250705342... are roots of the system of equations 3*r^3*s^2 = 1 + 2*(-1 + r)*r*s, 1 + r^3*s^3 = s + (-1 + r)*r*s^2. - Vaclav Kotesovec, Mar 06 2016
EXAMPLE
a(3)=2 because we have UDUDUD and UUUDDD, where U=(1,1) and D=(1,-1); the other three Dyck paths of semilength 3, namely UD(UU)DD, (UU)DDUD and (UU)DUDD, have ascents of length 2 (shown between parentheses).
From Gus Wiseman, Aug 14 2018: (Start)
The a(5) = 17 series-reduced Mathematica expressions:
o[o[][],o]
o[o,o[][]]
o[o[],o[]]
o[o[],o,o]
o[o,o[],o]
o[o,o,o[]]
o[o,o,o,o]
o[][o[],o]
o[][o,o[]]
o[][o,o,o]
o[][][o,o]
o[o[],o][]
o[o,o[]][]
o[o,o,o][]
o[][o,o][]
o[o,o][][]
o[][][][][]
The a(5) = 17 rooted plane trees with no binary branchings:
(((((o)))))
(((ooo)))
(((o)oo))
((o(o)o))
((oo(o)))
((oooo))
(((o))oo)
(o((o))o)
(oo((o)))
((o)(o)o)
((o)o(o))
(o(o)(o))
((o)ooo)
(o(o)oo)
(oo(o)o)
(ooo(o))
(ooooo)
(End)
MAPLE
Order:=35: S:=solve(series(V*(1-V)/(1-V^2+V^3), V)=z, V): seq(coeff(S, z^n), n=1..33); # V=zG
P:= gfun:-rectoproc({(69*n^2+207*n+138)*a(n)+(97*n^2+609*n+830)*a(n+1)+(-38*n^2-342*n-694)*a(n+2)+(37*n^2+333*n+734)*a(n+3)+(2*n^2+18*n+34)*a(n+4)+(-7*n^2-87*n-266)*a(n+5)+(n^2+15*n+56)*a(n+6), a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=6, a(5)=17}, a(n), remember):
seq(P(n), n=0..50); # Robert Israel, Aug 24 2015
MATHEMATICA
a[n_] := 1/(n+1) Sum[Binomial[n+1, j] Binomial[3j-n-3, j-1] (-1)^(n+1-j), {j, n+1, (n+3)/3, -1}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
PROG
(Maxima) a102403(n):=1/n*sum(binomial(n, j)*binomial(3*j-n-2, j-1)*(-1)^(n-j), j, ceiling((n+2)/3), n); \\ Vladimir Kruchinin, Mar 07 2011
(PARI) Vec( serreverse( O(x^33) + x/(1+x/(1-x)-x^2) ) /x ) \\ Joerg Arndt, Apr 28 2016
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 06 2005
STATUS
approved