login
A102396
A mod 2 related Jacobsthal sequence.
2
0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 3, 5, 1, 1, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 11, 1, 1, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 11, 1, 3, 3, 5, 3, 5, 5, 11, 3, 5, 5, 11, 5, 11, 11, 21, 1, 1, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 11, 1, 3, 3, 5, 3, 5, 5, 11, 3, 5, 5, 11, 5, 11, 11, 21, 1, 3
OFFSET
0,8
COMMENTS
Conjecture: all the terms are Jacobsthal numbers.
The conjecture is true since a(n) = A001045(A000120(n)). - Paul Barry, Jan 07 2005
LINKS
FORMULA
a(2^n-1) = A001045(n).
A001316(n) = A102395(n) + 2*a(n).
a(n) = Sum_{k=0..n} if(n+k == 1 (mod 3), C(n, k) mod 2, 0).
a(n) = Sum_{k=0..n} if(n+k == 2 (mod 3), C(n, k) mod 2, 0).
a(n) = (1/2) * Sum_{k=0..n} ({F(n+k)*binomial(n, k)} mod 2) where F = A000045.
Recurrence : a(0) = 0 then a(2n) = a(n) and a(2n+1) = 2*a(n) + 1 - 2*t(n) where t(n) = A010060(n) is the Thue-Morse sequence. - Benoit Cloitre, May 15 2005
MATHEMATICA
j[n_] := (2^n - (-1)^n) / 3; a[n_] := j[DigitCount[n, 2, 1]]; Array[a, 100, 0] (* Amiram Eldar, Jul 22 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 06 2005
STATUS
approved