OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-7).
FORMULA
a(n) = A086351(n+1) - 3*A086351(n) (FAMP result); Inversion gives A027649 (SuperSeeker result); Inverse binomial transform of A007070 (SuperSeeker result);
From Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009: (Start)
a(n) = ((1+sqrt(2))*(3+sqrt(2))^n + (1-sqrt(2))*(3-sqrt(2))^n)/2 offset 0.
Third binomial transform of 1,2,2,4,4. (End)
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0)=1, a(1)=5. - Philippe Deléham, Sep 19 2009
MATHEMATICA
CoefficientList[Series[(1-x)/(7x^2-6x+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -7}, {1, 5}, 30] (* Harvey P. Dale, Dec 10 2017 *)
PROG
(Magma) [Floor(((1+Sqrt(2))*(3+Sqrt(2))^n+(1-Sqrt(2))*(3-Sqrt(2))^n)/2): n in [0..30]]; // Vincenzo Librandi, Oct 12 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Feb 19 2005
STATUS
approved