login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102260
Begin with 5, multiply each digit by 2, keeping the memory of the groupings of the preceding digits.
0
5, 10, 20, 40, 80, 160, 2120, 4240, 8480, 168160, 212162120, 4242124240, 8484248480, 16816848168160, 2121621216816212162120, 424212424212162124242124240, 8484248484242124248484248480
OFFSET
1,1
FORMULA
Apply the rule "d*2", beginning with 5
EXAMPLE
Read a(5)=80 which produces a(6)=160 because 8*2=16 and 0*2=0.
Now read a(6)=160 which produces a(7)=2120 because 1*2=2, 6*2=12 and 0*2=0.
Read a(10)=168160 which produces the digits of a(11)=212162 AND the first three digits of a(12)=1204242 because 1*2=2, 6*2=12, 8*2=16, 1*2=2 AND 6*2=12 and 0*2=0
MATHEMATICA
Flatten[ NestList[ Function[x, FromDigits[ Flatten[ IntegerDigits[2IntegerDigits[ x]]] ]], 5, 16]] (* Robert G. Wilson v, Feb 21 2005 *)
CROSSREFS
Sequence in context: A323831 A020714 A146523 * A023383 A229171 A092407
KEYWORD
base,easy,nonn
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Feb 21 2005
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
STATUS
approved