login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102233
Number of preferential arrangements of n labeled elements when at least k=3 elements per rank are required.
11
1, 0, 0, 1, 1, 1, 21, 71, 183, 2101, 13513, 64285, 629949, 5762615, 41992107, 427215283, 4789958371, 47283346849, 540921904725, 6980052633257, 85901272312905, 1129338979629643, 16398293425501375, 238339738265039119, 3588600147767147775, 58124879519314730741
OFFSET
0,7
COMMENTS
The labeled case for at least k=2 elements per rank is given by A032032 = Partition n labeled elements into sets of sizes of at least 2 and order the sets. The unlabeled case for at least k=3 elements per rank is given by A000930 = A Lamé sequence of higher order. The unlabeled case for at least k=2 elements per rank is given by A000045 = Fibonacci numbers.
With m = floor(n/3), a(n) is the number of ways to distribute n different toys to m numbered children such that each child receiving a toy gets at least three toys and, if child k gets no toys, then each child numbered higher than k also gets no toys. Furthermore, a(n)= row sums of triangle A200092 for n>=3. - Dennis P. Walsh, Apr 15 2013
Row sums of triangle A200092. - Dennis P. Walsh, Apr 15 2013
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1.
FORMULA
E.g.f.: 1-(z^2-2*exp(z)+2+2*z)/(4-2*exp(z)+2*z+z^2).
a(n) = n! * sum(m=1..n, sum(k=0..m, k!*(-1)^(m-k) *binomial(m,k) *sum(i=0..n-m, stirling2(i+k,k) *binomial(m-k,n-m-i) *2^(-n+m+i) /(i+k)!))); a(0)=1. - Vladimir Kruchinin, Feb 01 2011
a(n) ~ 2*n!/((2+r^2)*r^(n+1)), where r = 1.56811999239... is the root of the equation 4+2*r+r^2 = 2*exp(r). - Vaclav Kotesovec, Sep 29 2013
a(0) = 1; a(n) = Sum_{k=3..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
E.g.f.: 1/(2 + x + x^2/2 - exp(x)). - Christian Sievers, Oct 27 2024
EXAMPLE
Let 1,2,3,4,5,6 denote six labeled elements. Let | denote a separation between two ranks. E.g., if elements 1,2 and 3 are on rank (also called level) one and elements 3,4 and 5 are on rank two, then we have the ranking 123|456.
For n=9 we have a(9)=2101 rankings. The order within a rank does not count. Six examples are: 123|456|789; 123456789; 12345|6789; 129|345678; 1235|46789; 789|123456.
MAPLE
seq (n! *coeff (series (1- (z^2-2*exp(z)+2+2*z) /(4-2*exp(z)+2*z+z^2), z=0, n+1), z, n), n=0..30);
with(combstruct): SeqSetL := [S, {S=Sequence(U), U=Set(Z, card >= 3)}, labeled]: seq(count(SeqSetL, size=j), j=0..23); # Zerinvary Lajos, Oct 19 2006
# third Maple program:
b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=3..n)) end:
a:= n-> n!*b(n):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 29 2014
MATHEMATICA
CoefficientList[Series[1-(x^2-2*E^x+2+2*x)/(4-2*E^x+2*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
b[n_] := b[n] = If[n==0, 1, Sum[b[n-j]/j!, {j, 3, n}]]; a[n_] := n!*b[n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016, after Alois P. Heinz *)
PROG
(PARI) z='z+O('z^66); Vec(serlaplace( 1-(z^2-2*exp(z)+2+2*z) / (4-2*exp(z)+2*z+z^2) ) ) \\ Joerg Arndt, Apr 16 2013
CROSSREFS
Cf. column k=3 of A245732.
Sequence in context: A044540 A195026 A296035 * A309903 A187719 A156285
KEYWORD
nonn
AUTHOR
Thomas Wieder, Jan 01 2005
EXTENSIONS
a(0) changed to 1 at the suggestion of Zerinvary Lajos, Oct 26 2006
STATUS
approved