login
A102005
Fixed point of the morphism 1 -> 12, 2 -> 111.
0
1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1
OFFSET
0,2
COMMENTS
A binary non-Pisot sequence.
LINKS
Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60.
Mohammad K. Azarian, Solution to Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal Vol. 39, No. 1, January 2008, pp. 66-67.
A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
MAPLE
f:=proc(n) if n=1 then 1, 2 elif n=2 then 1, 1, 1 else fi end: g[1]:=[1]: for n from 2 to 7 do g[n]:=map(f, g[n-1]) od: g[7]; # Emeric Deutsch, Feb 23 2005
MATHEMATICA
Nest[ Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 1, 1}})]}], {1}, 6] (* Robert G. Wilson v, Feb 26 2005 *)
CROSSREFS
Sequence in context: A128591 A354747 A254444 * A051700 A337006 A025892
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 03 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2005
STATUS
approved