OFFSET
1,2
COMMENTS
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
FORMULA
T(n, k) = [2^(n-k)/k]binomial(n-1, k-1)*Sum_{i=1..k} (-2)^(k-i)*binomial(k, i)*binomial(3i, i-1).
G.f.: G(t, z) = 1/(1-F), where F satisfies F = z(t + 2tF^2/(1-F) + tF^2/(1-F)^2 + 2F).
EXAMPLE
T(2,1)=2 because we have /_ and _\; T(2,2)=1 because we have /\
Triangle begins:
1;
2, 1;
4, 4, 4;
8, 12, 24, 11;
16, 32, 96, 88, 41;
...
MAPLE
T:=(n, k)->(2^(n-k)/k)*binomial(n-1, k-1)*sum((-2)^(k-i)*binomial(k, i)*binomial(3*i, i-1), i=1..k):for n from 1 to 10 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := 2^(n-k)/k Binomial[n-1, k-1] Sum[(-2)^(k-i) Binomial[k, i] Binomial[3i, i-1], {i, 1, k}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jan 19 2005
STATUS
approved