login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-vertex unlabeled oriented graphs without endpoints.
2

%I #14 Jan 25 2021 19:56:56

%S 1,1,1,3,21,369,16929,1913682,546626268,406959998851,808598348346150,

%T 4358157210587930509,64443771774627635711718,

%U 2636248889492487709302815665,300297332862557660078111708007894,95764277032243987785712142452776403618,85885545190811866954428990373255822969983915

%N Number of n-vertex unlabeled oriented graphs without endpoints.

%H Andrew Howroyd, <a href="/A101389/b101389.txt">Table of n, a(n) for n = 0..50</a>

%e a(3) = 3 because there are 2 distinct orientations of the triangle K_3 plus the empty graph on 3 vertices.

%o (PARI) \\ See links in A339645 for combinatorial species functions.

%o oedges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}

%o ographsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 3^oedges(p) * sMonomial(p)); s/n!}

%o ographs(n)={sum(k=0, n, ographsCycleIndex(k)*x^k) + O(x*x^n)}

%o trees(n,k)={sRevert(x*sv(1)/sExp(k*x*sv(1) + O(x^n)))}

%o cycleIndexSeries(n)={my(g=ographs(n), tr=trees(n,2), tu=tr-tr^2); sSolve( g/sExp(tu), tr )*symGroupSeries(n)}

%o NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ _Andrew Howroyd_, Dec 27 2020

%o (PARI) \\ faster stand-alone version

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}

%o seq(n)={Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 3^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^2 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2))} \\ _Andrew Howroyd_, Jan 22 2021

%Y Cf. A100569 (labeled case), A100548, A101388, A004110, A004108, A059166, A059167, A001174.

%K nonn

%O 0,4

%A Goran Kilibarda, _Vladeta Jovovic_, Jan 14 2005

%E a(0)=1 prepended and terms a(9) and beyond from _Andrew Howroyd_, Dec 27 2020