Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 22 2021 16:06:21
%S 1,1,1,8,137,7704,1413982,855543836,1775124241697,12985137979651848,
%T 340909258684048264585,32512676857544231506934756,
%U 11365672344040389664750137465767,14668676509227095069116619104786898732,70315084528883620836175544247562749711989951
%N Number of n-vertex unlabeled digraphs without endpoints.
%H Andrew Howroyd, <a href="/A101388/b101388.txt">Table of n, a(n) for n = 0..50</a>
%o (PARI)
%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
%o seq(n)=Vec(sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, my(d=p[i]); (1-x^d)^3 + O(x*x^(n-k))) ); x^k*s/k!)/(1-x^2)) \\ _Andrew Howroyd_, Jan 22 2021
%Y Cf. A100548 (labeled case), A004110, A004108, A059166, A059167, A101389.
%K nonn
%O 0,4
%A Goran Kilibarda, Zoran Maksimovic, _Vladeta Jovovic_, Jan 14 2005
%E a(0)=1 prepended and terms a(7) and beyond from _Andrew Howroyd_, Jan 22 2021