login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: (5 - 3*x)/(1 - 6*x + x^2).
13

%I #62 Mar 16 2024 15:22:28

%S 5,27,157,915,5333,31083,181165,1055907,6154277,35869755,209064253,

%T 1218515763,7102030325,41393666187,241259966797,1406166134595,

%U 8195736840773,47768254910043,278413792619485,1622714500806867,9457873212221717,55124524772523435,321289275422918893

%N Expansion of g.f.: (5 - 3*x)/(1 - 6*x + x^2).

%C A floretion-generated sequence relating to NSW numbers and numbers n such that (n^2 - 8)/2 is a square. It is also possible to label this sequence as the "tesfor-transform of the zero-sequence" under the floretion given in the program code, below. This is because the sequence "vesseq" would normally have been A046184 (indices of octagonal numbers which are also a square) using the floretion given. This floretion, however, was purposely "altered" in such a way that the sequence "vesseq" would turn into A000004. As (a(n)) would not have occurred under "natural" circumstances, one could speak of it as the transform of A000004.

%C Floretion Algebra Multiplication Program FAMP code: - tesforseq[ + 3'i - 2'j + 'k + 3i' - 2j' + k' - 4'ii' - 3'jj' + 4'kk' - 'ij' - 'ji' + 3'jk' + 3'kj' + 4e], Note: vesforseq = A000004, lesforseq = A002315, jesforseq = A077445

%C From _Wolfdieter Lang_, Feb 05 2015: (Start)

%C All positive solutions x = a(n) of the (generalized) Pell equation x^2 - 2*y^2 = +7 based on the fundamental solution (x2,y2) = (5,3) of the second class of (proper) solutions. The corresponding y solutions are given by y(n) = A253811(n).

%C All other positive solutions come from the first class of (proper) solutions based on the fundamental solution (x1,y1) = (3,1). These are given in A038762 and A038761.

%C All solutions of this Pell equation are found in A077443(n+1) and A077442(n), for n >= 0. See, e.g., the Nagell reference on how to find all solutions.

%C (End)

%D T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.

%H Colin Barker, <a href="/A101386/b101386.txt">Table of n, a(n) for n = 0..1000</a>

%H M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, <a href="http://www.jstor.org/stable/2968551">Problem 47</a>, Amer. Math. Monthly, 4 (1897), 25-28.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Morris Newman, Daniel Shanks, and H. C. Williams, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa38/aa3826.pdf">Simple groups of square order and an interesting sequence of primes</a>, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NSWNumber.html">NSW Number.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1).

%F a(n) = A002315(n) + A077445(n+1). Note: the offset of A077445 is 1.

%F a(n+1) - a(n) = 2*A054490(n+1).

%F a(n) = 6*a(n-1) - a(n-2), a(0)=5, a(1)=27. - _Philippe Deléham_, Nov 17 2008

%F From Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009: (Start)

%F a(n) = ((5+sqrt(18))*(3 + sqrt(8))^n + (5-sqrt(18))*(3 - sqrt(8))^n)/2.

%F Third binomial transform of A164737. (End)

%F a(n) = rational part of z(n, with z(n) = (5+3*sqrt(2))*(3+2*sqrt(2))^n), n >= 0, the general positive solutions of the second class of proper solutions. See the preceding formula. - _Wolfdieter Lang_, Feb 05 2015

%F a(n) = 5*A001109(n+1) - 3*A001109(n). - _G. C. Greubel_, Mar 17 2020

%F a(n) = Pell(2*n+2) + 3*Pell(2*n+1), where Pell(n) = A000129(n). - _G. C. Greubel_, Apr 17 2020

%F E.g.f.: exp(3*x)*(5*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - _Stefano Spezia_, Mar 16 2024

%p A101386:= (n) -> simplify(5*ChebyshevU(n, 3) - 3*ChebyshevU(n-1, 3)); seq( A101386(n), n = 0..30); # _G. C. Greubel_, Mar 17 2020

%t CoefficientList[ Series[(5-3x)/(1-6x+x^2), {x,0,30}], x] (* _Robert G. Wilson v_, Jan 29 2005 *)

%t LinearRecurrence[{6,-1},{5,27},30] (* _Harvey P. Dale_, Apr 23 2016 *)

%o (PARI) Vec((5-3*x)/(1-6*x+x^2) + O(x^30)) \\ _Colin Barker_, Feb 05 2015

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!((5 - 3*x)/(1-6*x+x^2))); // _G. C. Greubel_, Jul 26 2018

%o (SageMath) [5*chebyshev_U(n,3) -3*chebyshev_U(n-1,3) for n in (0..30)] # _G. C. Greubel_, Mar 17 2020

%Y Cf. A000004, A000129, A001109, A002315, A038761, A038762, A046184, A054490, A164737.

%Y Cf. A077442, A077443(n+1), A077445, A253811.

%K nonn,easy

%O 0,1

%A _Creighton Dement_, Jan 23 2005

%E More terms from _Robert G. Wilson v_, Jan 29 2005