login
A101348
Arises from a particular cyclic transformation of the floretion - .5'i - .5i' - .5'ij' - .5'ik' + .5'ji' + .5'ki'.
0
0, 1, 1, 2, 2, 0, 3, 0, 0, 0, 0, 4, 0, 5, 5, 6, 6, 0, 7, 0, 0, 0, 0, 8, 0, 9, 9, 10, 10, 0, 11, 0, 0, 0, 0, 12, 0, 13, 13, 14, 14, 0, 15, 0, 0, 0, 0, 16, 0, 17, 17, 18, 18, 0, 19, 0, 0, 0, 0, 20, 0, 21, 21, 22, 22, 0, 23, 0, 0, 0, 0, 24, 0, 25, 25, 26, 26, 0, 27, 0, 0, 0, 0, 28, 0, 29, 29, 30, 30, 0
OFFSET
0,4
COMMENTS
FAMP code: (a(n)) = jesleftfiz(pos)seq(E*C) with E = - .5'i + .5'j - .5'k - .5i' - .5j' + .5k' C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki'
FORMULA
Conjectures from Colin Barker, Apr 30 2019: (Start)
G.f.: x*(1 + x^2 - x^3 - 2*x^4 + 2*x^5 - x^6 + 2*x^7 - x^8 + x^9) / ((1 - x)^2*(1 + x^2)^2*(1 + x + x^2)*(1 - x^2 + x^4)^2).
a(n) = a(n-1) + a(n-3) - a(n-4) - 2*a(n-6) + 2*a(n-7) + 2*a(n-9) - 2*a(n-10) - a(n-12) + a(n-13) + a(n-15) - a(n-16) for n>15.
(End)
CROSSREFS
Sequence in context: A137349 A087318 A087319 * A141659 A355859 A294519
KEYWORD
nonn
AUTHOR
Creighton Dement, Dec 25 2004
STATUS
approved