login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1+3*x+2*x^2)/((1+x+x^2)*(1-x-x^2)).
7

%I #76 Mar 09 2024 11:35:41

%S 0,1,3,3,5,10,14,23,39,61,99,162,260,421,683,1103,1785,2890,4674,7563,

%T 12239,19801,32039,51842,83880,135721,219603,355323,574925,930250,

%U 1505174,2435423,3940599,6376021,10316619,16692642,27009260,43701901

%N Expansion of x*(1+3*x+2*x^2)/((1+x+x^2)*(1-x-x^2)).

%C This sequence was investigated in cooperation with _Paul Barry_.

%C Generating floretion: - 0.5'i - 0.5'k - 0.5j' - 0.5'ii' + 0.5'jj' - 0.5'kk' + 0.5'ik' - 0.5'ki' ("tes").

%C From _Joshua P. Bowman_, Sep 28 2023: (Start)

%C a(n) is equal to the number of circular binary sequences of length n+1 with an even number of 0's and no consecutive 1's. A circular binary sequence is a finite sequence of 0's and 1's for which the first and last digits are considered to be adjacent. Rotations are distinguished from each other.

%C a(n) is also equal to the number of matchings in the cycle graph C_{n+1} for which the number of edges plus the number of unmatched vertices is even.

%C a(n) is also equal to the number of circular compositions of n+1 into an even number of 1's and 2's. (End)

%H Wojciech Florek, <a href="/A100886/b100886.txt">Table of n, a(n) for n = 0..1001</a>

%H Joshua P. Bowman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Bowman/bowman4.html">Compositions with an Odd Number of Parts, and Other Congruences</a>, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 19.

%H Wojciech Florek, <a href="http://doi.org/10.1016/j.amc.2018.06.014">A class of generalized Tribonacci sequences applied to counting problems</a>, Appl. Math. Comput., 338 (2018), 809-821.

%H W. O. J. Moser, <a href="http://www.fq.math.ca/Scanned/31-1/moser.pdf">Cyclic binary strings without long runs of like (alternating) bits</a>, Fibonacci Quart. 31 (1993), no. 1, 2-6.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,2,1).

%F (1/2)*(a(n) + A100887(n) - A100888(n)) = A061347(n+3).

%F a(n) = (L(n+1)-A061347(n+1))/2, L=A000032; [corrected by _Wojciech Florek_, Feb 26 2018]

%F a(n) = a(n-2) + 2*a(n-3) + a(n-4), a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 3.

%F a(n) = n*Sum_{j=1..floor(n/2)} binomial(2*j,n-2*j)/(2*j). - _Vladimir Kruchinin_, Apr 09 2011 (with offset 1, cf. PARI code)

%F a(n) = floor(phi^(n+1)/2), n mod 3 = 0,1; a(n) = floor((phi^(n+1)+3)/2), n mod 3 = 2, phi = (1 + sqrt(5))/2; from Binet's formula or the relation to the Lucas numbers A000032. - _Wojciech Florek_, Mar 03 2018

%F a(n) = A000032(n+1) - A366043(n+1). - _Joshua P. Bowman_, Sep 28 2023

%e When counting circular binary sequences with an even number of 0's and no consecutive 1's, the sequence "1" is not allowed because the 1 is considered to be adjacent to itself. Thus a(0)=0. For n=2, the a(2)=3 allowed sequences of length 3 are 001, 010, and 100. For n=3, the a(3)=3 allowed sequences of length 4 are 0000, 0101, and 1010. - _Joshua P. Bowman_, Sep 28 2023

%t a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 3; a[n_] := a[n] = a[n - 2] + 2a[n - 3] + a[n - 4]; Table[ a[n], {n, 0, 36}]

%t (* Or *) CoefficientList[ Series[x(1 + 3x + 2x^2)/((1 + x + x^2)(1 - x - x^2)), {x, 0, 36}], x] (* _Robert G. Wilson v_, Nov 26 2004 *)

%t LinearRecurrence[{0,1,2,1},{0,1,3,3},40] (* _Harvey P. Dale_, Apr 04 2016 *)

%o (Maxima) a(n):=n*sum(binomial(k,n-k)*(if oddp(k) then 0 else 1/k),k,1,n) /* _Vladimir Kruchinin_, Apr 09 2011 */

%o (PARI)

%o a(n)=n*sum(j=1,n\2,k=2*j;binomial(k,n-k)/k);

%o vector(66,n,a(n)) /* _Joerg Arndt_, Apr 09 2011 */

%o (PARI)

%o concat([0],Vec(x*(1+3*x+2*x^2)/((1+x+x^2)*(1-x-x^2))+O(x^66))) /* _Joerg Arndt_, Apr 09 2011 */

%o (Magma) I:=[0,1,3,3]; [n le 4 select I[n] else Self(n-2)+2*Self(n-3)+Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Jul 30 2015

%Y Cf. A000032, A007040, A087204, A100887, A100888, A100889, A100890, A366043.

%K nonn,easy

%O 0,3

%A _Creighton Dement_, Nov 21 2004

%E More terms from _Robert G. Wilson v_, Nov 26 2004