login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100884
Real parts of multiperfect Gaussian numbers z, sorted with respect to |z| and Re(z).
8
1, 1, 6, 5, 10, 12, 60, 72, 28, 100, 108, 120, 204, 300, 263, 140, 526, 912, 150, 720, 1470, 1520, 1200, 1704, 672, 600, 4560, 4828, 3600, 5584, 5880, 4680, 6312, 6240, 1800, 2160, 14484, 17640, 8984, 72824, 62400
OFFSET
1,3
COMMENTS
Sort the Gaussian integers z in the first quadrant according to increasing modulus |z|, and within the same modulus according to increasing Re(z): 1, 1+i, 2, 1+2i, 2+i, 2+2i, 3, 1+3i, 3+i, 2+3i, 3+2i,...
If z divides the value of sigma(z), defined in A103228, i.e., if sigma(z)=z*m with m some Gaussian integer (m not necessarily in the first quadrant), add Re(z) to the sequence.
EXAMPLE
For z = 1, sigma(z) = 1 and m = sigma(z)/z = 1, which adds 1 to the sequence.
For z = 1+3i, sigma(z) = 5+5i and m = sigma(z)/z = 2-i, which adds 1 to the sequence.
For z = 6+2i, sigma(z) = -10+10i and m = sigma(z)/z = -1+2i, which adds 6 to the sequence.
For z = 5+5i, sigma(z) = 20i and m = sigma(z)/ z= 2+2i, which adds 5 to the sequence.
For z = (1+i)^7 = 8-8i, the divisors are 1, 1+i, (1+i)^2 = 2i, (1+i)^3 = -2+2i, (1+i)^4 = -4, (1+i)^5= -4-4i, (1+i)^6 = -8i, (1+i)^7 = 8-8i. So sigma(z) is 1 +1+i +2i -2+2i -4 -4-4i -8i +8-8i = -15i and sigma(z)/z is m = -15i/(8-8i) which is not a Gaussian integer, so Re(z)=8 is NOT added to the sequence.
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
Entirely rewritten, including the a(n), by R. J. Mathar, Mar 12 2010
a(10)-a(41) from Amiram Eldar, Feb 10 2020
STATUS
approved