login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100836
a(n) is the smallest value k > 1 such that k^2 - 1 is divisible by n^2.
1
2, 3, 8, 7, 24, 17, 48, 31, 80, 49, 120, 17, 168, 97, 26, 127, 288, 161, 360, 49, 197, 241, 528, 127, 624, 337, 728, 97, 840, 199, 960, 511, 485, 577, 99, 161, 1368, 721, 170, 351, 1680, 197, 1848, 241, 649, 1057, 2208, 127, 2400, 1249, 577, 337, 2808, 1457, 1451
OFFSET
1,1
COMMENTS
a(n) = n^2 - 1 if n > 1 is in A235868. - Robert Israel, Jan 17 2019
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (first 500 terms from Harvey P. Dale)
EXAMPLE
a(4)=7 because 7^2 - 1 is divisible by 4^2 (and 7 is the smallest integer > 1 that satisfies this criterion).
MAPLE
f:= n -> min(map(t -> rhs(op(t)), {msolve(k^2-1, n^2)}) minus {1}):
f(1):= 2:
map(f, [$1..100]); # Robert Israel, Jan 17 2019
MATHEMATICA
With[{c=Range[2, 10000]}, Flatten[Table[Select[c, Divisible[#^2-1, n^2]&, 1], {n, 60}]]] (* Harvey P. Dale, Oct 23 2011 *)
PROG
(PARI) { A100836(n)=local(f, b, t, m); if(n==1, return(1)); if(n==2, return(3)); t=valuation(n, 2); if(n==2^t, return(2^(2*t-1)-1)); f=factorint(n/2^t); f=vector(matsize(f)[1], j, f[j, 1]^(2*f[j, 2])); if(t>0, f=concat(f, [2^(2*t-1)])); b=n^2+1; forvec(v=vector(#f, i, [0, 1]), m=lift(chinese(vector(#f, j, Mod((-1)^v[j], f[j])))); if(m>1, b=min(b, m)); ); b } /* Max Alekseyev, Nov 21 2008 */
CROSSREFS
Cf. A235868.
Sequence in context: A250116 A318949 A367827 * A173162 A198104 A237643
KEYWORD
nonn,look
AUTHOR
Thomas Kerscher (Thomas.Kerscher(AT)web.de), Jan 19 2005
EXTENSIONS
Entries confirmed by Ray Chandler, R. J. Mathar, and Max Alekseyev, Nov 21 2008
STATUS
approved