login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100549
Let n = 2^e_2 * 3^e_ * 5^e_ * ... be the prime factorization of n; then a(n) = largest prime <= 1 + max{e_2, e_3, e_5, ...}; a(1) = 1 by convention.
6
1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 3, 3, 2, 2, 2, 3, 2
OFFSET
1,2
LINKS
David Applegate and N. J. A. Sloane, Table of n, a(n) for n = 1..10000
EXAMPLE
If n = 8 = 2^3, a(n) = (largest prime <= 3+1) = 3.
If n = 480 = 2^5*3*5, a(n) = (largest prime <= 1 + max{5,1,1}) = 5.
MAPLE
# if n = prod_p p^e_p, then
# pp = largest prime <= 1 + max e_p
with(numtheory):
pp := proc(n) local f, m; option remember;
if (n = 1) then
return 1;
end if;
m := 1:
for f in op(2..-1, ifactors(n)) do
if (f[2] > m) then
m := f[2]:
end if;
end do;
prevprime(m+2);
end proc;
MATHEMATICA
{1}~Join~Array[Prime@PrimePi[1 + Max@FactorInteger[#][[All, -1]]] &, 105, 2] (* Michael De Vlieger, Nov 13 2018 *)
PROG
(PARI) a(n) = if (n==1, 1, precprime(1 + vecmax(factor(n)[, 2]~))); \\ Michel Marcus, Nov 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved