login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-node labeled digraphs without endpoints.
3

%I #17 Mar 28 2023 08:00:11

%S 1,1,1,28,2539,847126,987474781,4267529230672,71328353711113801,

%T 4706871807383903992060,1236666872833000506726110479,

%U 1297665884376581511952494336126664,5444003907104081585974782986977125743035,91341304409373044577470623665964376840167100920

%N Number of n-node labeled digraphs without endpoints.

%H Andrew Howroyd, <a href="/A100548/b100548.txt">Table of n, a(n) for n = 0..50</a>

%F E.g.f.: exp(3/2*x^2)*(Sum_{n>=0} 2^(n*(n-1))*(x/exp(3*x))^n/n!).

%t m = 11;

%t egf = Exp[3x^2/2]*Sum[2^(n(n-1))*(x/Exp[3 x])^n/n!, {n, 0, m}];

%t a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;

%t Table[a[n], {n, 0, m}] (* _Jean-François Alcover_, Feb 23 2019 *)

%o (PARI) seq(n)={my(g=x/exp(3*x + O(x*x^n))); Vec(serlaplace(exp(3*x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1))*g^k/k!)))} \\ _Andrew Howroyd_, Jan 08 2020

%o (Magma)

%o m:=30;

%o f:= func< x | Exp(3*x^2/2)*(&+[ 2^(n*(n-1))*(x*Exp(-3*x))^n/Factorial(n) : n in [0..m+2]]) >;

%o R<x>:=PowerSeriesRing(Rationals(), m);

%o Coefficients(R!(Laplace( f(x) ))); // _G. C. Greubel_, Mar 27 2023

%o (SageMath)

%o m = 30

%o def f(x): return exp(3*x^2/2)*sum( 2^(n*(n-1))*(x*exp(-3*x))^n/factorial(n) for n in range(m+2) )

%o def A100548_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( f(x) ).egf_to_ogf().list()

%o A100548_list(m) # _G. C. Greubel_, Mar 27 2023

%Y Cf. A059167, A101388 (labeled case).

%K nonn

%O 0,4

%A Goran Kilibarda, Zoran Maksimovic, _Vladeta Jovovic_, Jan 02 2005

%E Terms a(12) and beyond from _Andrew Howroyd_, Jan 08 2020