login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100548
Number of n-node labeled digraphs without endpoints.
3
1, 1, 1, 28, 2539, 847126, 987474781, 4267529230672, 71328353711113801, 4706871807383903992060, 1236666872833000506726110479, 1297665884376581511952494336126664, 5444003907104081585974782986977125743035, 91341304409373044577470623665964376840167100920
OFFSET
0,4
LINKS
FORMULA
E.g.f.: exp(3/2*x^2)*(Sum_{n>=0} 2^(n*(n-1))*(x/exp(3*x))^n/n!).
MATHEMATICA
m = 11;
egf = Exp[3x^2/2]*Sum[2^(n(n-1))*(x/Exp[3 x])^n/n!, {n, 0, m}];
a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
PROG
(PARI) seq(n)={my(g=x/exp(3*x + O(x*x^n))); Vec(serlaplace(exp(3*x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1))*g^k/k!)))} \\ Andrew Howroyd, Jan 08 2020
(Magma)
m:=30;
f:= func< x | Exp(3*x^2/2)*(&+[ 2^(n*(n-1))*(x*Exp(-3*x))^n/Factorial(n) : n in [0..m+2]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 27 2023
(SageMath)
m = 30
def f(x): return exp(3*x^2/2)*sum( 2^(n*(n-1))*(x*exp(-3*x))^n/factorial(n) for n in range(m+2) )
def A100548_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A100548_list(m) # G. C. Greubel, Mar 27 2023
CROSSREFS
Cf. A059167, A101388 (labeled case).
Sequence in context: A184134 A327294 A281137 * A103660 A317799 A275654
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 02 2005
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 08 2020
STATUS
approved