login
A100267
Primes of the form x^32 + y^32.
13
2, 3512911982806776822251393039617, 2211377674535255285545615254209921, 476961452964007550415682034114910337, 14748002492224459115975467901357427939457
OFFSET
1,1
COMMENTS
The Mathematica program generates numbers of the form x^32 + y^32 in order of increasing magnitude; it accepts a number when it is prime.
LINKS
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
MATHEMATICA
n=5; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; !PrimeQ[p]]; p, {10}]
CROSSREFS
Cf. A100266 (primes of the form x^16 + y^16), A006686 (primes of the form x^8 + y^8), A002645 (primes of the form x^4 + y^4), A002313 (primes of the form x^2 + y^2).
Sequence in context: A118019 A309966 A154424 * A176935 A257228 A065803
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 11 2004
STATUS
approved