OFFSET
0,9
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..6104
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
H. J. Brothers, Pascal's Prism: Supplementary Material.
Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, see page 175.
Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 97.
EXAMPLE
x^0 = T(0,x)
x^1 = T(1,x) + 0T(0,x)
2x^2 = T(2,x) + 0T(1,x) + 1T(0,x)
4x^3 = T(3,x) + 0T(2,x) + 3T(1,x) + 0T(0,x)
8x^4 = T(4,x) + 0T(3,x) + 4T(2,x) + 0T(1,x) + 3T(0,x)
16x^5 = T(5,x) + 0T(4,x) + 5T(3,x) + 0T(2,x) + 10T(1,x) + 0T(0,x)
MATHEMATICA
a[k_, n_] := If[k == 1, 1, If[EvenQ[n] || k < 0 || n > k, 0, If[n >= k - 1, Binomial[2*Floor[k/2], Floor[k/2]]/2, Binomial[k - 1, Floor[n/2]]]]];
Table[a[k, n], {k, 1, 13}, {n, 1, k}] // Flatten (* Jean-François Alcover, May 04 2017, translated from PARI *)
PROG
(PARI) a(k, n)=if(k==1, 1, if(n%2==0||k<0||n>k, 0, if(n>=k-1, binomial(2*floor(k/2), floor(k/2))/2, binomial(k-1, floor(n/2)))))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Nov 13 2004
STATUS
approved