login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100119
a(n) = n-th centered n-gonal number.
6
1, 2, 7, 19, 41, 76, 127, 197, 289, 406, 551, 727, 937, 1184, 1471, 1801, 2177, 2602, 3079, 3611, 4201, 4852, 5567, 6349, 7201, 8126, 9127, 10207, 11369, 12616, 13951, 15377, 16897, 18514, 20231, 22051, 23977, 26012, 28159, 30421, 32801, 35302
OFFSET
0,2
COMMENTS
a(n) is n times the n-th triangular number plus 1. - Thomas M. Green, Nov 16 2009
From Gary W. Adamson, Jul 31 2010: (Start)
Equals (1, 2, 3, 4, ...) convolved with (1, 0, 4, 7, 10, 13, ...).
Example: a(5) = 76 = (6, 5, 4, 3, 2, 1) dot (1, 0, 4, 7, 10, 13) = (6 + 0 + 16 + 21 + 20 + 13). (End)
FORMULA
a(n) = 1 + n*(n + n^2)/2 = 1 + (1/2)*n^2 + (1/2) * n^3 = 1 + mean(n^2, n^3). - Joshua Zucker, May 03 2006
Equals A002411(n) + 1. - Olivier Gérard, Jun 20 2007
G.f.: (1 - 2*x + 5*x^2 - x^3) / (x-1)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012
a(n) = (A098547(n)+1)/2. - Richard Turk, Jul 18 2017
a(n) = A060354(n+2) - A000290(n+1) = A006003(n+1) - A005563(n) and for n>0 A005920(n) - A068601(n+1). - Bruce J. Nicholson, Jun 23 2018
EXAMPLE
a(2) = 2*3 + 1 = 7, a(3) = 3*6 + 1 = 19, a(4) = 4*10 + 1 = 41. - Thomas M. Green, Nov 16 2009
MATHEMATICA
Table[(n^3+n^2)/2+1, {n, 0, 6!}] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2010 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 2, 7, 19}, 40] (* Vincenzo Librandi, Jun 25 2012 *)
PROG
(Magma) I:=[1, 2, 7, 19]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 25 2012
(PARI) a(n) = n^2*(n+1)/2+1; \\ Altug Alkan, Sep 21 2018
CROSSREFS
See also A101357 (Cumulative sums of the n-th n-gonal numbers).
A diagonal of A101321.
Sequence in context: A140610 A152461 A215208 * A322385 A350170 A220697
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 26 2004
EXTENSIONS
Corrected and extended by Joshua Zucker, May 03 2006
STATUS
approved