login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099863
A permutation of the odd primes that satisfy the condition that the sequence modulo 2^n has period 2^(n-1) for all n>0, where the least unused primes are chosen in the process.
2
3, 5, 7, 17, 11, 13, 31, 41, 19, 53, 23, 97, 59, 29, 47, 89, 163, 37, 103, 113, 43, 109, 127, 73, 179, 149, 311, 193, 283, 61, 79, 313, 67, 197, 71, 337, 331, 461, 223, 233, 83, 373, 599, 673, 251, 349, 239, 281, 227, 101, 167, 433, 107, 173, 191, 137, 499, 853, 503, 257, 347, 509, 271, 761, 131, 389, 647, 401, 139, 397, 1439, 937, 659, 181, 151, 1249, 443, 157, 431, 1753, 547, 421, 487, 241, 683, 2029, 1279, 457, 307, 277, 439, 577, 2203, 701, 463, 953, 1987, 1093, 199, 977
OFFSET
1,1
COMMENTS
Index of primes is given by A099864.
LINKS
EXAMPLE
The sequence is of period 2^(n-1) modulo 2^n, for all n>0 and consists of all odd numbers less than 2^n:
A (mod 2) = [1, ... (repeating)];
A (mod 4) = [3, 1, ... (repeating)];
A (mod 8) = [3, 5, 7, 1, ... (repeating)];
A (mod 16) = [3, 5, 7, 1, 11, 13, 15, 9, ... (repeating)];
A (mod 32) = [3, 5, 7, 17, 11, 13, 31, 9, 19, 21, 23, 1, 27, 29, 15, 25, ... (repeating)];
A (mod 64) = [3, 5, 7, 17, 11, 13, 31, 41, 19, 53, 23, 33, 59, 29, 47, 25, 35, 37, 39, 49, 43, 45, 63, 9, 51, 21, 55, 1, 27, 61, 15, 57, ... (repeating)];
A (mod 128) = [3, 5, 7, 17, 11, 13, 31, 41, 19, 53, 23, 97, 59, 29, 47, 89, 35, 37, 103, 113, 43, 109, 127, 73, 51, 21, 55, 65, 27, 61, 79, 57, 67, 69, 71, 81, 75, 77, 95, 105, 83, 117, 87, 33, 123, 93, 111, 25, 99, 101, 39, 49, 107, 45, 63, 9, 115, 85, 119, 1, 91, 125, 15, 121, ... (repeating)];
A (mod 256) = [3, 5, 7, 17, 11, 13, 31, 41, 19, 53, 23, 97, 59, 29, 47, 89, 163, 37, 103, 113, 43, 109, 127, 73, 179, 149, 55, 193, 27, 61, 79, 57, 67, 197, 71, 81, 75, 205, 223, 233, 83, 117, 87, 161, 251, 93, 239, 25, 227, 101, 167, 177, 107, 173, 191, 137, 243, 85, 247, 1, 91, 253, 15, 249, 131, 133, 135, 145, 139, 141, 159, 169, 147, 181, 151, 225, 187, 157, 175, 217, 35, 165, 231, 241, 171, 237, 255, 201, 51, 21, 183, 65, 155, 189, 207, 185, 195, 69, 199, 209, 203, 77, 95, 105, 211, 245, 215, 33, 123, 221, 111, 153, 99, 229, 39, 49, 235, 45, 63, 9, 115, 213, 119, 129, 219, 125, 143, 121, ... (repeating)];
A (mod 512) = [3, 5, 7, 17, 11, 13, 31, 41, 19, 53, 23, 97, 59, 29, 47, 89, 163, 37, 103, 113, 43, 109, 127, 73, 179, 149, 311, 193, 283, 61, 79, 313, 67, 197, 71, 337, 331, 461, 223, 233, 83, 373, 87, 161, 251, 349, 239, 281, 227, 101, 167, 433, 107, 173, 191, 137, 499, 341, 503, 257, 347, 509, 271, 249, 131, 389, 135, 401, 139, 397, 415, 425, 147, 181, 151, 225, 443, 157, 431, 217, 35, 421, 487, 241, 171, 493, 255, 457, 307, 277, 439, 65, 155, 189, 463, 441, 451, 69, 199, 465, 459, 77, 95, 105, 211, 245, 215, 33, 379, 221, 367, 409, 99, 229, 39, 49, 491, 45, 63, 9, 371, 213, 119, 129, 475, 125, 399, 121, 259, 261, 263, 273, 267, 269, 287, 297, 275, 309, 279, 353, 315, 285, 303, 345, 419, 293, 359, 369, 299, 365, 383, 329, 435, 405, 55, 449, 27, 317, 335, 57, 323, 453, 327, 81, 75, 205, 479, 489, 339, 117, 343, 417, 507, 93, 495, 25, 483, 357, 423, 177, 363, 429, 447, 393, 243, 85, 247, 1, 91, 253, 15, 505, 387, 133, 391, 145, 395, 141, 159, 169, 403, 437, 407, 481, 187, 413, 175, 473, 291, 165, 231, 497, 427, 237, 511, 201, 51, 21, 183, 321, 411, 445, 207, 185, 195, 325, 455, 209, 203, 333, 351, 361, 467, 501, 471, 289, 123, 477, 111, 153, 355, 485, 295, 305, 235, 301, 319, 265, 115, 469, 375, 385, 219, 381, 143, 377, ... (repeating)];
...
The last prime in the first 2^(n-1) terms of A (mod 2^n), n >= 2, begins
[3, 7, 13, 29, 61, 107, 229, 467, 991, 1667, 3271, 8147, 16339, 32303, ...].
Position of the last prime in the first 2^(n-1) terms of A (mod 2^n), n >= 2:
[1, 3, 6, 14, 30, 53, 114, 233, 423, 833, 1635, 3561, 7657, 15631, ...].
The position of the first occurrence of 1 in A (mod 2^n), n >= 1, begins:
[1, 2, 4, 4, 12, 28, 60, 60, 188, 444, 444, 444, 2492, 6588, 6588, ...].
The position of the first occurrence of 2^n-1 in A (mod 2^n), n >= 1, begins:
[1, 1, 3, 7, 7, 23, 23, 87, 215, 471, 983, 2007, 2007, 6103, 14295, ...].
The value of a(2^n) (mod 2^n), n >= 1, begins
[1, 1, 1, 9, 25, 57, 121, 121, 377, 377, 377, 377, 377, 377, 377, ...].
The value of a(2^n), n >= 0, begins
[3, 5, 17, 41, 89, 313, 761, 1657, 1913, 3449, 6521, 20857, 24953, 49529, 131449, 229753, ...].
Positions of prime(n), for n >= 2, begin
[1, 2, 3, 5, 6, 4, 9, 11, 14, 7, 18, 8, 21, 15, 10, 13, 30, 33, 35, 24, 31, 41, 16, 12, 50, 19, 53, 22, 20, 23, 65, 56, 69, 26, 75, 78, 17, 51, 54, 25, 74, 55, 28, 34, 99, 105, 39, 49, 114, 40, 47, 84, 45, 60, 131, 134, 63, 90, 48, 29, 146, 89, 27, 32, 158, 37, 36, 61, 46, 140, 147, 111, 42, 109, 151, 66, 70, 68, 112, 145, 82, 79, 52, 91, 77, 156, 88, 38, 95, 233, 167, 83, 117, 57, 59, 62, 120, 261, 270, 81, 118, 217, 160, 269, 92, 165, 164, 43, 72, 103, 306, 104, 309, ...].
RECORDS.
Records in this sequence begin:
[3, 5, 7, 17, 31, 41, 53, 97, 163, 179, 311, 313, 337, 461, 599, 673, 853, 1439, 1753, 2029, 2203, 2609, 3709, 4663, 7681, 7993, 16963, 20921, 25603, 36523, 38803, 38959, 59471, 75913, 82141, 87959, 106417, 110609, 135241, 160207, 171733, 171799, 265547, 321647, 630893, 638663, 704861, 836833, 1002083, 1067653, 1440107, 1634201, 2588983, 2861569, 4668899, ...].
Positions of records begin:
[1, 2, 3, 4, 7, 8, 10, 12, 17, 25, 27, 32, 36, 38, 43, 44, 58, 71, 80, 86, 93, 116, 126, 155, 188, 288, 289, 352, 513, 597, 969, 1039, 1055, 1080, 1390, 1739, 1844, 2052, 2072, 2143, 2426, 2443, 2597, 3055, 4118, 4451, 8238, 8268, 8561, 8898, 10421, 15216, 16411, 17084, 18097, ...].
PROG
(PARI) /* Print the first 2^L terms (size M of P vector may need adjustment): */
{L=10; M=4*L*2^L; A=vector(2^L); P=vector(M); A[1]=3; P[1]=1;
for(i=1, L, for(n=2^(i-1)+1, 2^i, for(m=1, M, q=A[n-2^(i-1)]+(2*m-1)*2^i; if(isprime(q)&P[q]==0, A[n]=q; P[q]=1; next(2)) ))); A}
CROSSREFS
Cf. A099864.
Sequence in context: A307437 A070846 A078683 * A112092 A031441 A078150
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2004
EXTENSIONS
Added more terms, expanded b-file, and expanded Example section. - Paul D. Hanna, Aug 18 2019
STATUS
approved