OFFSET
1,1
COMMENTS
Relates the growth of the n-th prime function A000040(n) to the base-2 exponential of n.
LINKS
Peter J. Cho and Henry H. Kim, The average of the smallest prime in a conjugacy class, International Mathematics Research Notices, Vol. 2020, No. 6 (2020), pp. 1718-1747, arXiv preprint, arXiv:1601.03012 [math.NT], 2016.
Paul Erdős, Remarks on number theory. I., Mat. Lapok, Vol. 12 (1961), pp. 10-17; Math. Rev. 26 #2410.
S. R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
Paul Pollack, The average least quadratic nonresidue modulo m and other variations on a theme of Erdős, J. Number Theory, Vol. 132, No. 6 (2012), pp. 1185-1202, alternative link.
FORMULA
Equals Sum_{n>=1} prime(n)/2^n.
Equals 2 plus the constant in A098882. - R. J. Mathar, Sep 02 2008
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} A053760(k). - Amiram Eldar, Oct 29 2020
EXAMPLE
3.6746439660113287789956763090840294116777975887794373283122052201763...
MAPLE
f:=N->sum(ithprime(n)/2^n, n=1..N); evalf[106](f(500)); evalf[106](f(1000));
MATHEMATICA
RealDigits[Sum[Prime[i]/2^i, {i, 1000}], 10, 120][[1]] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) suminf(k=1, prime(k)/2^k) \\ Michel Marcus, Jan 13 2016
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 07 2004
STATUS
approved