login
A098873
Least k such that 2*((6*n)^k) - 1 is prime.
1
1, 1, 2, 1, 1, 1, 1, 4, 1, 5, 1, 34, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 24, 8, 1, 10, 7, 1, 1, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 28, 5, 2, 2484, 1, 2, 1, 1
OFFSET
1,3
EXAMPLE
2*((6*1)^1) - 1 = 11 prime, so a(1)=1
2*((6*2)^1) - 1 = 23 prime, so a(2)=1
2*((6*3)^1) - 1 = 35 = 5*7
2*((6*3)^2) - 1 = 647 prime, so a(3)=2
MATHEMATICA
lk[n_]:=Module[{k=1}, While[!PrimeQ[2((6n)^k)-1], k++]; k]; Array[lk, 50] (* Harvey P. Dale, Apr 02 2018 *)
CROSSREFS
Sequence in context: A376267 A060097 A098120 * A377063 A257462 A337131
KEYWORD
nonn
AUTHOR
Pierre CAMI, Oct 13 2004
EXTENSIONS
Corrected by Harvey P. Dale, Apr 02 2018
STATUS
approved