login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098706
a(n) = 2*A076218(n).
1
0, 2, 10, 290, 9802, 332930, 11309770, 384199202, 13051463050, 443365544450, 15061377048202, 511643454094370, 17380816062160330, 590436102659356802, 20057446674355970890, 681362750825443653410, 23146276081390728245002, 786292024016459316676610
OFFSET
0,2
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
FORMULA
a(0)=0, a(1)=2, and a(n) = 2*A001653(n-2) * A001653(n-1) for n>=2.
For n>1, a(n) = A002315(n-2)*A002315(n-1) + 3.
For n>0, a(n) = (A001542(n-1)-1)^2 + (A001542(n-1)-1)^2.
From Colin Barker, Mar 02 2016: (Start)
a(n) = (6+(17+12*sqrt(2))^(1-n)+(17-12*sqrt(2))*(17+12*sqrt(2))^n)/4 for n>0.
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3) for n>3.
G.f.: 2*x*(1-30*x+5*x^2) / ((1-x)*(1-34*x+x^2)).
(End)
EXAMPLE
a(3) = 2*5*29 = 2*145.
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {0, 2, 10, 290}, 18] (* or *)
CoefficientList[Series[2 x (1 - 30 x + 5 x^2)/((1 - x) (1 - 34 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Nov 02 2020 *)
PROG
(PARI) concat(0, Vec(2*x*(1-30*x+5*x^2)/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
CROSSREFS
Sequence in context: A003047 A028580 A171873 * A143249 A161181 A073834
KEYWORD
nonn,easy
AUTHOR
Charlie Marion, Oct 28 2004
EXTENSIONS
More terms from Ray Chandler, Nov 10 2004
STATUS
approved