OFFSET
0,3
COMMENTS
Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Than a(n) is the 1,3 element of A^n.
REFERENCES
P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,8,-16).
FORMULA
a(n)=2^(n-1)-2^(3(n-1)/2)(1+(-1)^n)/sqrt(2); a(n)=2a(n-1)+8a(n-2)-16a(n-3).
a(n) = (-2)^(n-1)*A094024(n-1). - R. J. Mathar, Mar 08 2021
MATHEMATICA
CoefficientList[Series[x (1-4x)/((1-2x)(1-8x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 8, -16}, {0, 1, -2}, 40] (* Harvey P. Dale, Jun 30 2011 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 19 2004
STATUS
approved