login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098523
Expansion of (1+x^2)/(1-x-x^5) = (1+x^2)/((1-x+x^2)*(1-x^2-x^3)).
3
1, 1, 2, 2, 2, 3, 4, 6, 8, 10, 13, 17, 23, 31, 41, 54, 71, 94, 125, 166, 220, 291, 385, 510, 676, 896, 1187, 1572, 2082, 2758, 3654, 4841, 6413, 8495, 11253, 14907, 19748, 26161, 34656, 45909, 60816, 80564, 106725, 141381, 187290, 248106
OFFSET
0,3
COMMENTS
The expansion of (1+kx^2)/(1-x-k^2*x^5) satisfies the recurrence a(n)=a(n-1)+k^2*a(n-5),a(0)=1,a(1)=1,a(2)=k+1,a(3)=k+1,a(4)=k+1, with a(n)=sum{k=0..floor(n/2), binomial(n-2k,floor(k/2))r^k}.
FORMULA
a(n)=a(n-1)+a(n-5); a(n)=sum{k=0..floor(n/2), binomial(n-2k, floor(k/2))}.
7*a(n) = 8*A182097(n) +5*A182097(n-1) +3*A182097(n-2) - A010892(n) +3*A010892(n-1). - R. J. Mathar, Jul 07 2023
MATHEMATICA
CoefficientList[Series[(1+x^2)/(1-x-x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, 0, 0, 0, 1}, {1, 1, 2, 2, 2}, 50] (* Harvey P. Dale, Mar 05 2014 *)
CROSSREFS
Cf. A097333.
Sequence in context: A132427 A176975 A333374 * A350514 A308620 A339711
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved