login
A098149
a(0)=-1, a(1)=-1, a(n)=-3*a(n-1)-a(n-2) for n>1.
9
-1, -1, 4, -11, 29, -76, 199, -521, 1364, -3571, 9349, -24476, 64079, -167761, 439204, -1149851, 3010349, -7881196, 20633239, -54018521, 141422324, -370248451, 969323029, -2537720636, 6643838879, -17393796001, 45537549124, -119218851371
OFFSET
0,3
COMMENTS
Sequence relates bisections of Lucas and Fibonacci numbers.
2*a(n) + A098150(n) = 8*(-1)^(n+1)*A001519(n) - (-1)^(n+1)*A005248(n+1). Apparently, if (z(n)) is any sequence of integers (not all zero) satisfying the formula z(n) = 2(z(n-2) - z(n-1)) + z(n-3) then |z(n+1)/z(n)| -> golden ratio phi + 1 = (3+sqrt(5))/2.
Pisano period lengths: 1, 3, 4, 6, 1, 12, 8, 6, 12, 3, 10, 12, 7, 24, 4, 12, 9, 12, 18, 6, ... . - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Oct 12 2020: (Start)
[X(n) = (-1)^n*(S(n, 3) + S(n-1, 3)), Y(n) = X(n-1)] gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 3*X*Y = +5, for n = -oo..+oo, with Chebyshev S polynomials (A049310), with S(-1, x) = 0, S(-|n|, x) = - S(|n|-2, x), for |n| >= 2, and S(n,-x) = (-1)^n*S(n, x). The present sequence is a(n) = -X(n-1), for n >= 0. See the formula section.
This binary indefinite quadratic form of discriminant 5, representing 5, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication) See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
LINKS
Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
Tanya Khovanova, Recursive Sequences
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
FORMULA
G.f.: -(1+4*x)/(1+3*x+x^2). - Philippe Deléham, Nov 19 2006
a(n) = (-1)^n*A002878(n-1). - R. J. Mathar, Jan 30 2011
-a(n+1) = Sum_{k, 0<=k<=n}(-5)^k*Binomial(n+k, n-k) = Sum_{k, 0<=k<=n}(-5)^k*A085478(n, k). - Philippe Deléham, Nov 28 2006
a(n) = (-1)^n*(S(n-1, 3) + S(n-2, 3)) = (-1)^n*S(2*(n-1), sqrt(5)), for n >= 0, with Chebyshev S polynomials (A049310), with S(-1, x) = 0 and S(-2, x) = -1. S(n, 3) = A001906(n+1) = F(2*(n+1)), with F = A000045. - Wolfdieter Lang, Oct 12 2020
MATHEMATICA
a[0] = a[1] = -1; a[n_] := a[n] = -3a[n - 2] - a[n - 1]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Sep 01 2004 *)
LinearRecurrence[{-3, -1}, {-1, -1}, 30] (* Harvey P. Dale, Apr 19 2014 *)
CoefficientList[Series[-(1 + 4 x)/(1 + 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Aug 29 2004
EXTENSIONS
Simpler definition from Philippe Deléham, Nov 19 2006
STATUS
approved