login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Product_{k=1..n} H(k), where H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.
2

%I #14 Apr 02 2015 16:37:53

%S 1,3,11,275,7535,73843,1276429,138766067,989263291643,

%T 7301752355616983,55566999221913933083,434538985460750767066613,

%U 3482368080874980096524258963,28534304884670510863221395297153

%N Numerator of Product_{k=1..n} H(k), where H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.

%e (1)(1 + 1/2)(1 + 1/2 + 1/3) = 1*(3/2)*(11/6) = 11/4, so a(3) = 11.

%t a[n_] := Numerator[ Product[ HarmonicNumber[k], {k, 1, n}]]; Table[ a[n], {n, 14}] (* _Robert G. Wilson v_, Aug 26 2004 *)

%t Numerator[Rest[FoldList[Times,1,HarmonicNumber[Range[20]]]]] (* _Harvey P. Dale_, Apr 02 2015 *)

%o (PARI) hh(n)=sum(i=1,n,1/i); ff(n)=numerator(prod(i=1,n,hh(i))); for (i=1,30,print1(ff(i),",")) \\ Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Aug 23 2004

%Y Cf. A097424.

%K frac,nonn

%O 1,2

%A _Leroy Quet_, Aug 21 2004

%E More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com) and _Robert G. Wilson v_, Aug 23 2004