login
A097318
Numbers with more than one prime factor and, in the ordered factorization, the exponent never increases when read from left to right.
20
6, 10, 12, 14, 15, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 106, 110, 111, 112, 114
OFFSET
1,1
COMMENTS
If n = Product_{k=1..m} p(k)^e(k), then m > 1, e(1) >= e(2) >= ... >= e(m).
These are numbers whose ordered prime signature is weakly decreasing. Weakly increasing is A304678. Ordered prime signature is A124010. - Gus Wiseman, Nov 10 2019
LINKS
S. Ramanujan, Asymptotic formulas for the distribution of integers of various types, Proc. London Math. Soc. 2, 16 (1917), 112-132.
EXAMPLE
60 is 2^2*3^1*5^1, A001221(60)=3 and 2>=1>=1, so 60 is in sequence.
MAPLE
q:= n-> (l-> (t-> t>1 and andmap(i-> l[i, 2]>=l[i+1, 2],
[$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
select(q, [$1..120])[]; # Alois P. Heinz, Nov 11 2019
MATHEMATICA
fQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Length[f] > 1 && Max[Differences[f]] <= 0]; Select[Range[2, 200], fQ] (* T. D. Noe, Nov 04 2013 *)
PROG
(PARI) for(n=1, 130, F=factor(n); t=0; s=matsize(F)[1]; if(s>1, for(k=1, s-1, if(F[k, 2]<F[k+1, 2], t=1; break)); if(!t, print1(n", "))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Aug 04 2004
STATUS
approved