login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097164
Expansion of (1+3x)/((1-x)(1-4x^2)).
5
1, 4, 8, 20, 36, 84, 148, 340, 596, 1364, 2388, 5460, 9556, 21844, 38228, 87380, 152916, 349524, 611668, 1398100, 2446676, 5592404, 9786708, 22369620, 39146836, 89478484, 156587348, 357913940, 626349396, 1431655764, 2505397588
OFFSET
0,2
COMMENTS
Partial sums of A084221. a(n) = A097163(n+1)/4. Third binomial transform is A097165.
a(n+1) = 4*A097163(n). - Zerinvary Lajos, Mar 17 2008
See A133628 for an essentially identical sequence. - R. J. Mathar, Jun 08 2008
FORMULA
a(n) = 5*2^n/2 - (-2)^n/6 - 4/3;
a(n) = a(n-1) + 4a(n-2) - 4a(n-3).
G.f. ( 1+3*x ) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Jul 06 2011
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=4*a[n-2]+4 od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
MATHEMATICA
CoefficientList[Series[(1+3x)/((1-x)(1-4x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 4, -4}, {1, 4, 8}, 50] (* Harvey P. Dale, Jul 11 2023 *)
CROSSREFS
Sequence in context: A152233 A301896 A053303 * A133628 A280486 A097940
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 30 2004
STATUS
approved