Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 24 2021 07:01:30
%S 1,3,7,21,66,258,1079,4987,25195,136723,789438,4863268,31693715,
%T 217331845,1564583770,11795630861,92833623206,760811482322,
%U 6479991883525,57256139503047,523919025038279,4956976879724565,48424420955966635,487810283307069696
%N Total sum of minimum block sizes in all partitions of n-set.
%H Alois P. Heinz, <a href="/A097147/b097147.txt">Table of n, a(n) for n = 1..576</a>
%F E.g.f.: Sum_{k>0} (-1+exp(Sum_{j>=k} x^j/j!)).
%p g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!,
%p `if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i)))
%p end:
%p a:= n-> g(n$2, 0):
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Mar 06 2015
%t Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i!,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* _Geoffrey Critzer_, Jan 10 2013 *)
%t g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0,
%t Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]];
%t a[n_] := g[n, n, 0];
%t Array[a, 30] (* _Jean-François Alcover_, Aug 24 2021, after _Alois P. Heinz_ *)
%Y Cf. A028417, A028418, A046746, A006128, A097145, A097146, A097148.
%Y Column k=1 of A319298.
%K easy,nonn
%O 1,2
%A _Vladeta Jovovic_, Jul 27 2004
%E More terms from _Max Alekseyev_, Apr 29 2010