login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097147
Total sum of minimum block sizes in all partitions of n-set.
6
1, 3, 7, 21, 66, 258, 1079, 4987, 25195, 136723, 789438, 4863268, 31693715, 217331845, 1564583770, 11795630861, 92833623206, 760811482322, 6479991883525, 57256139503047, 523919025038279, 4956976879724565, 48424420955966635, 487810283307069696
OFFSET
1,2
LINKS
FORMULA
E.g.f.: Sum_{k>0} (-1+exp(Sum_{j>=k} x^j/j!)).
MAPLE
g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!,
`if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i)))
end:
a:= n-> g(n$2, 0):
seq(a(n), n=1..30); # Alois P. Heinz, Mar 06 2015
MATHEMATICA
Drop[Apply[Plus, Table[nn=25; Range[0, nn]!CoefficientList[Series[Exp[Sum[ x^i/i!, {i, n, nn}]]-1, {x, 0, nn}], x], {n, 1, nn}]], 1] (* Geoffrey Critzer, Jan 10 2013 *)
g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0,
Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]];
a[n_] := g[n, n, 0];
Array[a, 30] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 27 2004
EXTENSIONS
More terms from Max Alekseyev, Apr 29 2010
STATUS
approved