Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:45:14
%S 1,1,1,5,13,25,57,141,325,737,1713,3989,9213,21289,49321,114205,
%T 264245,611569,1415713,3276837,7584237,17554489,40632089,94046637,
%U 217679141,503840001,1166187409,2699251381,6247675357,14460848969,33471028105
%N Expansion of (1-x)/((1-x)^2 - 4*x^3).
%C Related to the Lorenz-Poincaré geometry of the group PSL[2,C]. - _Roger L. Bagula_, Feb 17 2006
%H G. C. Greubel, <a href="/A097117/b097117.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,4).
%F G.f.: (1-x)/(1 - 2*x + x^2 - 4*x^3).
%F a(n) = 2*a(n-1) - a(n-2) + 4*a(n-3).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, 2*k)*4^k.
%t M = {{0, 1, 0}, {0, 0, 1}, {4, -1, 2}}; w[0] = {0, 1, 1}; w[n_] := w[n] = M.w[n - 1] a = Flatten[Table[w[n][[1]], {n, 0, 25}]] (* _Roger L. Bagula_, Feb 17 2006 *)
%t CoefficientList[Series[(1-x)/((1-x)^2-4x^3),{x,0,30}],x] (* or *) LinearRecurrence[{2,-1,4},{1,1,1},40] (* _Harvey P. Dale_, Jan 05 2019 *)
%o (PARI) my(x='x+O('x^30)); Vec((1-x)/((1-x)^2-4*x^3)) \\ _G. C. Greubel_, Jun 06 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/((1-x)^2-4*x^3) )); // _G. C. Greubel_, Jun 06 2019
%o (Sage) ((1-x)/((1-x)^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 06 2019
%o (GAP) a:=[1,1,1];; for n in [4..30] do a[n]:=2*a[n-1]-a[n-2]+4*a[n-3]; od; a; # _G. C. Greubel_, Jun 06 2019
%K easy,nonn
%O 0,4
%A _Paul Barry_, Jul 25 2004
%E Edited by _N. J. A. Sloane_, Aug 14 2008
%E Definition corrected by _Harvey P. Dale_, Jan 05 2019