login
A096940
Pascal (1,5) triangle.
14
5, 1, 5, 1, 6, 5, 1, 7, 11, 5, 1, 8, 18, 16, 5, 1, 9, 26, 34, 21, 5, 1, 10, 35, 60, 55, 26, 5, 1, 11, 45, 95, 115, 81, 31, 5, 1, 12, 56, 140, 210, 196, 112, 36, 5, 1, 13, 68, 196, 350, 406, 308, 148, 41, 5, 1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5, 1, 15, 95, 345, 810, 1302
OFFSET
0,1
COMMENTS
This is the fifth member, q=5, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1), A029635 (q=2) (but with a(0,0)=2, not 1), A095660, A095666.
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column nr. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x)=g(z)/(1-x*z*f(z)). Here: g(x)=(5-4*x)/(1-x), f(x)=1/(1-x), hence G(z,x)=(5-4*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} a(n-1-k, k) = A022096(n-2), n>=2, with n=1 value 5. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
LINKS
W. Lang, First 10 rows.
FORMULA
Recursion: a(n, m)=0 if m>n, a(0, 0)= 5; a(n, 0)=1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (5-4*x)/(1-x)^(m+1), m>=0.
a(n,k) = (1+4*k/n)*binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012
EXAMPLE
Triangle begins:
5;
1, 5;
1, 6, 5;
1, 7, 11, 5;
1, 8, 18, 16, 5;
1, 9, 26, 34, 21, 5;
1, 10, 35, 60, 55, 26, 5;
1, 11, 45, 95, 115, 81, 31, 5;
1, 12, 56, 140, 210, 196, 112, 36, 5;
1, 13, 68, 196, 350, 406, 308, 148, 41, 5;
1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5; etc.
MAPLE
a(n, k):=piecewise(n=0, 5, 0<n, (1+4*k/n)*binomial(n, k)) # Mircea Merca, Apr 08 2012
PROG
(PARI) a(n) = {if(n <= 1, return(5 - 4*(n==1))); my(m = (sqrtint(8*n + 1) - 1)\2, t = n - binomial(m + 1, 2)); (1+4*t/m)*binomial(m, t)} \\ David A. Corneth, Aug 28 2019
CROSSREFS
Row sums: A007283(n-1), n>=1, 5 if n=0; g.f.: (5-4*x)/(1-2*x). Alternating row sums are [5, -4, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n>=0: A000027(n+5), A056000(n-1), A096941-7.
Sequence in context: A095118 A251417 A100947 * A141345 A318664 A329031
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Jul 16 2004
STATUS
approved