login
A096921
Triangle array of binomial coefficients.
1
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 6, 1, 1, 3, 4, 6, 10, 1, 1, 4, 4, 10, 10, 20, 1, 1, 4, 5, 10, 15, 20, 35, 1, 1, 5, 5, 15, 15, 35, 35, 70, 1, 1, 5, 6, 15, 21, 35, 56, 70, 126, 1, 1, 6, 6, 21, 21, 56, 56, 126, 126, 252, 1, 1, 6, 7, 21, 28, 56, 84, 126, 210, 252, 462
OFFSET
0,6
FORMULA
T(n, k) = binomial(floor((n+k)/2), floor(k/2)).
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5
n=0: 1;
n=1: 1, 1;
n=2: 1, 1, 2;
n=3: 1, 1, 2, 3;
n=4: 1, 1, 3, 3, 6;
n=5: 1, 1, 3, 4, 6, 10;
...
MATHEMATICA
T[n_, k_]=Binomial[Floor[(n+k)/2], Floor[k/2]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Stefano Spezia, Aug 23 2022 *)
PROG
(PARI) T(n, k) = binomial((n+k)\2, k\2); \\ Michel Marcus, Oct 29 2022
CROSSREFS
Cf. A026010 (row sums), A016116 (diagonal sums), A001405 (main diagonal).
Sequence in context: A335545 A334997 A030111 * A308203 A275416 A037161
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 15 2004
STATUS
approved