login
A096904
A card-arranging problem: number of permutations p_1, ..., p_n of 1, ..., n such that i + p_i is a cube for every i.
1
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 4, 0, 0, 4, 4, 5, 1, 2, 1, 1, 1, 1, 2, 3, 7, 3, 10, 6, 5, 1, 1, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 30, 37, 1963, 1289, 1560
OFFSET
1,112
FORMULA
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j is a cube or not.
CROSSREFS
Sequence in context: A203542 A204301 A204084 * A375004 A375003 A308257
KEYWORD
nonn
AUTHOR
Ray Chandler, Aug 01 2004
STATUS
approved