OFFSET
0,2
COMMENTS
The ratio a(n+1) / a(n) increasingly approximates two constants connected to the golden ratio phi = (1 + sqrt(5))/2: (phi+1)/2 = 1.30901699... = A239798 and (phi-1)*2 = 1.23606797... = A134972, according to whether n is odd or even. - Davide Rotondo, Jul 31 2020
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Davide Rotondo, Perfino I Capelli Sono Tutti Contati (in Italian), see p. 11.
Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
FORMULA
a(n) = a(n-2) + a(n-4).
a(n) = 2*F((n+1)/2)*(1-(-1)^n)/2 + F((n+4)/2)*(1+(-1)^n)/2.
a(n) = Sum_{k=0..n} binomial(floor((n-k)/2), floor(k/2)). - Paul Barry, Jul 24 2004
MATHEMATICA
CoefficientList[Series[(1+x)^2/(1-x^2-x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 0, 1}, {1, 2, 2, 2}, 50] (* Harvey P. Dale, Jan 29 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 07 2004
STATUS
approved