login
A096489
Noncomposite numbers n such that number of decimal digits of n = number of divisors of n.
2
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
OFFSET
1,2
COMMENTS
Only 1 and primes with 2 decimal digits are here, so the sequence is finite: it consists of 1+25-4=22 terms. Part of A008364. Consists of the terms below 100 from A095862.
MATHEMATICA
{u=1, ta=Table[0, {25}]}; Do[s=Apply[Plus, IntegerDigits[n]]; s1=Length[IntegerDigits[n]]; If[Equal[s1, DivisorSigma[0, n]], Print[n]; ta[[u]]=n; u=u+1], {n, 1, 100}]
Select[Range[100], !CompositeQ[#]&&DivisorSigma[0, #]==IntegerLength[#]&] (* Harvey P. Dale, Jan 29 2024 *)
PROG
(PARI) print1(1); forprime(p=9, 99, print1(", "p)) \\ Charles R Greathouse IV, Apr 27, 2011
CROSSREFS
Sequence in context: A063193 A056758 A322273 * A008364 A140461 A120533
KEYWORD
base,fini,full,nonn,easy
AUTHOR
Labos Elemer, Jun 25 2004
STATUS
approved