login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096095
Digital Fibonacci numbers: a(0) = a(1) = 1; a(n+2) = a(n) ++ a(n+1) where ++ stands for digit-wise sum (with no carries).
2
1, 1, 2, 3, 5, 8, 13, 111, 124, 235, 359, 5814, 511613, 5161427, 567210310, 5612371737, 511795811047, 5161310711827714, 51618211410616387511, 51611337272013271110141225, 5161138888102246817264128736, 5111274911111537425910883742699511, 511127910722491311155271156169109106711171247
OFFSET
0,3
COMMENTS
In case corresponding digits add to a 2-digit number, the "1" is inserted instead of being added to the next higher significant digit. - M. F. Hasler, Apr 18 2009
A197945(n) = length of longest common prefix of a(n) and a(n+1). [Reinhard Zumkeller, Oct 19 2011]
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..36
FORMULA
frac( log[10]( a(n) )) tends to 0.7085296011388705685015..., i.e. the first digits 51112791588989116125412156111... eventually remain the same, since on the average a(n+1) has about 1/6 of digits more than a(n). - M. F. Hasler, Apr 18 2009
EXAMPLE
a(8) = a(6) ++ a(7) = 08 ++ 13 = concatenation of (0+1 = 1 and 8+3 = 11) = 111.
a(9) = a(7) ++ a(8) = 013 ++ 111 =124.
MATHEMATICA
nxt[{a_, b_}]:={b, FromDigits[Flatten[ IntegerDigits/@ (PadLeft[ IntegerDigits[ a], IntegerLength[ b], 0] + IntegerDigits[b])]]}; Transpose[ NestList[ nxt, {1, 1}, 25]][[1]] (* Harvey P. Dale, Dec 16 2012 *)
PROG
(PARI) a=[1, 1]; for(n=2, 30, a=concat(a, a[n]+a[n-1]); my(p=10^#Str(a[n])); while(p\=10, a[n]\p%10+a[n-1]\p%10 > 9 & a[n+1]+=(a[n+1]\p\10-1)*90*p)); a \\ M. F. Hasler, Apr 18 2009
(Haskell)
import Data.List (unfoldr)
a096095 n = a096095_list !! n
a096095_list = 1 : 1 : zipWith dadd a096095_list (tail a096095_list) where
dadd x y = foldl (\v d -> (if d < 10 then 10 else 100)*v + d)
0 $ reverse $ unfoldr f (x, y) where
f (x, y) | x + y == 0 = Nothing
| otherwise = Just (xd + yd, (x', y'))
where (x', xd) = divMod x 10; (y', yd) = divMod y 10
-- Reinhard Zumkeller, Oct 19 2011
CROSSREFS
Sequence in context: A041957 A329192 A294939 * A041101 A041809 A117566
KEYWORD
base,nice,nonn
AUTHOR
Amarnath Murthy, Jun 24 2004
EXTENSIONS
Edited and extended beyond a(12) by M. F. Hasler, Apr 18 2009
STATUS
approved