login
A096069
Smallest prime ending in prime(n) and == 1 (mod prime(n)), or 0 if no such prime exists.
0
0, 13, 0, 127, 2311, 313, 4217, 419, 21023, 929, 13331, 30637, 5741, 16943, 10247, 15053, 3659, 21961, 13267, 12071, 4673, 22279, 4483, 43789, 25997, 414101, 24103, 188107, 132109, 93113, 373127, 816131, 264137, 798139, 693149, 400151, 582157
OFFSET
1,2
COMMENTS
a(1) = a(3) = 0. Conjecture: No other term is zero.
I checked all n's <1450 with each having the required prime form. - Robert G. Wilson v, Jun 22 2004
EXAMPLE
a(6) = 1613 is a prime and 1613 ==1 mod (13), prime(6) = 13.
MATHEMATICA
f[n_] := Block[{k = 1, l = Floor[ Log[10, Prime[n]] + 1], p = Prime[n]}, If[n == 1 || n == 3, 0, While[ !PrimeQ[k*10^l + p] || Mod[k*10^l + p, p] != 1, k++ ]; k*10^l + p]]; Table[ f[n], {n, 37}] (* Robert G. Wilson v, Jun 22 2004 *)
CROSSREFS
Sequence in context: A114783 A094902 A252056 * A180265 A165400 A181154
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Jun 20 2004
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Jun 22 2004
STATUS
approved